An enhanced automatic speech recognition system for Arabic

نویسندگان

  • Mohamed Amine Menacer
  • Odile Mella
  • Dominique Fohr
  • Denis Jouvet
  • David Langlois
  • Kamel Smaïli
چکیده

Automatic speech recognition for Arabic is a very challenging task. Despite all the classical techniques for Automatic Speech Recognition (ASR), which can be efficiently applied to Arabic speech recognition, it is essential to take into consideration the language specificities to improve the system performance. In this article, we focus on Modern Standard Arabic (MSA) speech recognition. We introduce the challenges related to Arabic language, namely the complex morphology nature of the language and the absence of the short vowels in written text, which leads to several potential vowelization for each graphemes, which is often conflicting. We develop an ASR system for MSA by using Kaldi toolkit. Several acoustic and language models are trained. We obtain a Word Error Rate (WER) of 14.42 for the baseline system and 12.2 relative improvement by rescoring the lattice and by rewriting the output with the right Z hamoza above or below @ Alif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Designing and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods

For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Helpful Statistics in Recognizing Basic Arabic Phonemes

The recognition of continuous speech is one of the main challenges in the building of automatic speech recognition (ASR) systems, especially when it comes to phonetically complex languages such as Arabic. An ASR system seems to be actually in a blocked alley. Nearly all solutions follow the same general model. The previous research focused on enhancing its performance by incorporating supplemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017